

Certificate No. 17545

ASTA Certificate of Verification Tests

Laboratory Ref. No:	3345.2091256.0968
APPARATUS:	 730 A / 415 V / 1000 V / 4 kV (I_{nA}/U_n/U_i/U_{imp}), 50 Hz Low-voltage power switchgear and controlgear assembly consisting of: a three-phase and neutral main busbar system, a protective busbar, an incoming MCCB-feeder unit, five outgoing units with MCCB
DESIGNATION:	ELSTEEL TECHNO MODULE Panel Board Form 4b construction 800 A test assembly
MANUFACTURER:	Bloudan Control Systems Industry L.L.C. (BCS) P.O. Box 37691 Dubai, UAE
TESTED BY:	Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH Landsberger Allee 378 A 12681 Berlin, Germany
DATE(S) OF TESTS:	21 December 2009 to 23 August 2010

The apparatus, constructed in accordance with the description, drawings and photographs incorporated in this certificate has been subjected to the series of proving tests in accordance with

IEC 61439-2: Edition 1.0 2009-01

Verifications with reference to the tests listed in Annex D:

1:	strength of material and parts	9:	temperature-rise
2:	degree of protection	10:	short-circuit withstand strength
3:	clearances and creepage distances	11:	electromagnetic compatibility (EMC)
4:	protection against electric shock	12:	mechanical operation
8:	dielectric properties		

Refer to pages 1, 2 and 3 for ratings

The results are shown in the record of Proving Tests attached hereto. The values obtained and the general performance is considered to comply with the above Standard(s) and to justify the ratings assigned by the manufacturer as stated on the ratings page(s). This certificate applies only to the apparatus tested. Responsibility for conformity of any apparatus having the same or other designations rests with the Manufacturer.

his Certificate comprises this front sheet, 3 rating pages plus 84 other pages as detailed on pages 5 to 7.

Only integral reproductions of this whole certificate or reproductions of this page accompanied by any ratings pages are permitted.

Issued by Intertek, Hilton House, Corporation Street, Rugby, CV21 2DN England. Contact: <u>asta@intertek.com</u> Tel: +44 (0)1788 578435

ASTA Observer R. Borchert

> Certification Manager

> > Date

Page 1 of 87

Ratings assigned and proven by test

No.	Characteristic verified	Clause/ Sub-clause	Verified Tests and Ratings
1	Strength of material and parts	10.2	See below for details of Sub-clauses
	Resistance to corrosion	10.2.2	Severity test A for metallic indoor enclosure: verified
	Properties of insulating materials	10.2.3	Verified
	Thermal stability	10.2.3.1	Not applicable to metallic enclosure
	Resistance of insulating materials to normal heat	10.2.3.2	Verified
	Resistance to abnormal heat and fire due to internal electric effects	10.2.3.3	Verified
	Resistance to ultra-violet (UV) radiation	10.2.4	Not applicable to metallic enclosure
	Lifting	10.2.5	Verified
	Mechanical impact	10.2.6	IK – 01 Verified
	Marking	10.2.7	Verified
2	Degree of protection of enclosures	10.3	IP44
3	Clearances and creepage distances	10.4	
	Min. clearances ≥ 8 mm (overvoltage category IV)	10.4	Verified
	Min. creepage distance ≥ 16 mm (material group IIIa, pollution degree 3)	10.4	Verified
4	Protection against electric shock and integrity of protective circuits	10.5	
	Effective earth continuity, $R_{PE} < 0.1 \Omega$	10.5.2	Verified
	PE busbar, tinned copper 2 x 15 mm x 10 mm	10.5.3	1-phase 30 kA for 1 second, 63 kA peak
8	Dielectric properties	10.9	
	Rated insulation voltage Main circuits Auxiliary circuits	10.9.2	1000 V 300 V
	Rated impulse withstand voltage Main/distribution busbar MCCB-feeder without RCD MCCB-feeder with RCD	10.9.3	8 kV 8 kV 4 kV

R. Borchert ASTA Observer

Page 2 of 87

Ratings assigned and proven by test

No.	Characteristic verified	Clause/ Sub-clause	Verified Tests and Ratings
9	Temperature-rise limits	10.10.2	
	Main busbar 2 x 20 mm x 10 mm tinned copper per phase	10.10.2.3.6	730 A, 3-phase, 50 Hz
	MCCB-incomer, 1 x 50 mm x 10 mm tinned copper per phase with MCCB ABB TMAX T6S 800	10.10.2.3.6	730 A, 3-phase, 50 Hz
	Distribution busbar, 2 x 20 mm x 10 mm tinned copper per phase	10.10.2.3.6	730 A, 3-phase, 50 Hz
	3B-MCCB-feeder with insulated branch busbar 20 mm x 10 mm tinned copper, MCCB ABB TMAX T3S 250	10.10.2.3.6	250 A, 3-phase, 50 Hz
	3C-MCCB-feeder with insulated branch busbar 20 mm x 10 mm tinned copper, MCCB ABB TMAX T3S 200	10.10.2.3.6	200 A, 3-phase, 50 Hz
	3D-MCCB-feeder with insulated branch busbar 15 mm x 5 mm tinned copper, MCCB ABB TMAX T2S 160	10.10.2.3.6	100 A, 3-phase, 50 Hz
	3A-MCCB-feeder with insulated branch busbar 15 mm x 5 mm tinned copper, MCCB ABB TMAX T2S 160	10.10.2.3.6	70 A, 3-phase, 50 Hz
	4A-MCCB-feeder with insulated branch busbar 15 mm x 5 mm tinned copper, MCCB ABB TMAX T2S 160	10.10.2.3.6	10 A, 3-phase, 50 Hz
	Rated diversity factor		0.8

- -----

R. Borchert ASTA Observer

Page 3 of 87

Ratings assigned and proven by test

10	Short-circuit withstand strength	10.11	
	Main busbar 2 x 20 mm x 10 mm tinned copper per phase	10.11.5.3.3	3-phase 50 kA for 1 second, 105 kA peak
	Distribution busbar 2 x 20 mm x 10 mm tinned copper per phase	10.11.5.3.3	3-phase 50 kA for 1 second, 105 kA peak
	MCCB-incomer 50 mm x 10 mm tinned copper per phase with MCCB	10.11.5.3.3	3-phase 50 kA, 415 V, power factor 0.25
	3B-MCCB-feeder with insulated branch busbar 20 mm x 10 mm tinned copper, MCCB ABB TMAX T3S 250	10.11.5.3.2	3-phase 50 kA, 415 V, power factor 0.25
	3C-MCCB-feeder with insulated branch busbar 20 mm x 10 mm tinned copper, MCCB ABB TMAX T3S 200	10.11.5.3.2	3-phase 50 kA, 415 V, power factor 0.25
	3D-MCCB-feeder with insulated branch busbar 15 mm x 5 mm tinned copper, MCCB ABB TMAX T2S 160	10.11.5.3.2	3-phase 50 kA, 415 V, power factor 0.25
	3A-MCCB-feeder with insulated branch busbar 15 mm x 5 mm tinned copper, MCCB ABB TMAX T2S 160	10.11.5.3.2	3-phase 50 kA, 415 V, power factor 0.25
	4A-MCCB-feeder with insulated branch busbar 15 mm x 5 mm tinned copper, MCCB ABB TMAX T2S 160	10.11.5.3.2	3-phase 50 kA, 415 V, power factor 0.25
	Main Neutral 2 x 20 mm x 10 mm tinned copper per phase	10.11.5.3.5	3-phase 30 kA for 1 second, 63 kA peak
	Distribution neutral 2 x 20 mm x 10 mm tinned copper per phase	10.11.5.3.5	3-phase 30 kA for 1 second, 63 kA peak
	Outgoing neutral of 3B-MCCB-feeder with insulated branch busbar 20 mm x 10 mm tinned copper, MCCB ABB TMAX T3S 250	10.11.5.3.5	Single-phase 30 kA, 253 V, power factor 0.25
	Outgoing neutral of 3C-MCCB-feeder with insulated branch busbar 20 mm x 10 mm tinned copper, MCCB ABB TMAX T3S 200	10.11.5.3.5	Single-phase 30 kA, 253 V, power factor 0.25
	Outgoing neutral of 3D-MCCB-feeder with insulated branch busbar 15 mm x 5 mm tinned copper, MCCB ABB TMAX T2S 160	10.11.5.3.5	Single-phase 30 kA, 253 V, power factor 0.25
	Outgoing neutral of 3A-MCCB-feeder with insulated branch busbar 15 mm x 5 mm tinned copper, MCCB ABB TMAX T2S 160	10.11.5.3.5	Single-phase 30 kA, 253 V, power factor 0.25
	Outgoing neutral of 4A-MCCB-feeder with insulated branch busbar 15 mm x 5 mm tinned copper, MCCB ABB TMAX T2S 160	10.11.5.3.5	Single-phase 30 kA, 253 V, power factor 0.25
11	Electromagnetic compatibility (EMC)	10.12	Conditions for no testing required (J.10.12): verified
12	Mechanical operation	10.13	
	200 operating cycles	10.13	Verified

R. Borchert

Laboratory Reference No: 3345.2091256.0968

Laboratory Reference No: 3345.2091256.0968

ASTA Page 5 of 87

Conte	ents Pa	ge
1.	Present at the test	8
2.	Identity of the test object	9
2.1	Technical data and characteristics	9
2.2	Identity documents	12
3.	Verification of the resistance to corrosion	13
3.1	Test laboratory	13
3.2	Normative document	13
3.3	Required test parameters	13
3.4	Test arrangement	13
3.5	Test and measuring circuits	13
3.6	Test results	13
4.	Verification of resistance of insulating materials to normal heat	14
4.1	Test laboratory	14
4.2	Normative document	14
4.3	Required test parameters	14
4.4	Test arrangement	14
4.5	Technical data and characteristics	14
4.6	Test results	15
5.	Verification of the resistance of insulating materials to abnormal heat and fire due to internal electric effects	16
5.1	Test laboratory	16
5.2	Normative document	16
5.3	Required test parameters	16
5.4	Test arrangement	16
5.5	Technical data and characteristics	16
5.6	Test results	17
6.	Lifting	18
6.1	Test laboratory	18
6.2	Normative document	18
6.3	Required test parameters	18
6.4	Test arrangement	18
6.5	Test results	18

Laboratory Reference No: 3345.2091256.0968

ASTA Page 6 of 87

7.	Verification of mechanical impact	. 19
7.1	Test laboratory	. 19
7.2	Normative document	. 19
7.3	Required test parameters	. 19
7.4	Test arrangement	. 19
7.5	Test and measuring devices	. 19
7.6	Test results	. 19
8.	Marking	. 20
8.1	Test laboratory	. 20
8.2	Normative document	. 20
8.3	Required test parameters	. 20
8.4	Test arrangement	. 20
8.5	Test and measuring circuits	. 20
8.6	Test results	. 20
9.	Degree of protection of enclosures	. 21
9.1	Degree of protection against access to hazardous parts and against solid foreign objects - IP4X	. 21
9.2	Degree of protection against ingress of water - IPX4	. 22
10.	Verification of clearances and creepage distances	. 23
10.1	Test laboratory	. 23
10.2	Normative document	. 23
10.3	Required test parameters	. 23
10.4		
10.4	Test arrangement	. 23
10.5	Test arrangement Test and measuring circuits	. 23 . 23
10.4 10.5 10.6	Test arrangement Test and measuring circuits Test results	. 23 . 23 . 23
10.4 10.5 10.6 11.	Test arrangement Test and measuring circuits Test results Verification of protection against electric shock and integrity of the protective circuit	. 23 . 23 . 23 . 23
10.4 10.5 10.6 11. 11.1	Test arrangement Test and measuring circuits Test results Verification of protection against electric shock and integrity of the protective circuit Test laboratory	. 23 . 23 . 23 . 23 . 24
10.4 10.5 10.6 11. 11.1 11.2	Test arrangement Test and measuring circuits Test results Verification of protection against electric shock and integrity of the protective circuit Test laboratory Normative document	. 23 . 23 . 23 . 23 . 24 . 24
10.4 10.5 10.6 11. 11.1 11.2 11.3	Test arrangement Test and measuring circuits Test results Verification of protection against electric shock and integrity of the protective circuit Test laboratory Normative document Required test parameters	. 23 . 23 . 23 . 24 . 24 . 24 . 24
 10.4 10.5 10.6 11. 11.1 11.2 11.3 11.4 	Test arrangement Test and measuring circuits Test results Verification of protection against electric shock and integrity of the protective circuit Test laboratory Normative document Required test parameters Test arrangement	. 23 . 23 . 23 . 24 . 24 . 24 . 24 . 24
10.4 10.5 10.6 11. 11.1 11.2 11.3 11.4 11.5	Test arrangement Test and measuring circuits Test results Verification of protection against electric shock and integrity of the protective circuit Test laboratory Normative document Required test parameters Test arrangement Test and measuring circuits	. 23 . 23 . 23 . 23 . 24 . 24 . 24 . 24 . 24 . 25

Laboratory Reference No: 3345.2091256.0968

ASTA Page 7 of 87

12.	Verification of the dielectric properties	27
12.1	Test laboratory	27
12.2	Normative document	27
12.3	Required test parameters	27
12.4	Test arrangement	27
12.5	Test and measuring circuits	27
12.6	Test results	28
13.	Verification of temperature rise by testing with current	30
13.1	Test laboratory	30
13.2	Normative document	30
13.3	Required test parameters	30
13.4	Test arrangement	30
13.5	Test and measuring circuits	31
13.6	Test results	34
14.	Verification of short-circuit withstand strength	41
14.1	Test laboratory	41
14.2	Normative document	41
14.3	Required test parameters	41
14.4	Test arrangement	41
14.5	Test and measuring circuits	42
14.6	Test results	43
15.	Electromagnetic compatibility (EMC)	51
16.	Mechanical operation	52
16.1	Test laboratory	52
16.2	Normative document	52
16.3	Required test parameters	52
16.4	Test arrangement	52
16.5	Test and measuring circuits	52
16.6	Test results	52
17.	Photographs	53
18.	Oscillograms	63
19.	Drawings	81

Laboratory Reference No: 3345.2091256.0968

1. Present at the test

Mr.	Jens Haring	ASTA Observer
Mr.	Michael Heise	IPH test engineer in ch
Mr.	Ronald Borchert	IPH test engineer

Rainer Borchert Mr.

narge IPH test engineer

Mr.	Arun Pereira	BCS	
Mr.	Susan Bandary	BCS	
Mr.	Priyan Fernando	ELSTEEL	A.

Laboratory Reference No: 3345.2091256.0968

2. Identity of the test object

2.1 **Technical data and characteristics**

The technical data and characteristics of the test object are defined by the following parameters and specified by the client.

Client's order:	0505				
Test object:	Low-voltage power switchgear and controlgear assembly				
Туре:	ELSTEEL TECHNO MODULE Panel Board Form 4b construction				
	800 A test assembly				
Original manufacturer:	Bloudan Control Systems Industry L.L.C. (BCS)				
Serial No.:	Test sample				
Year of manufacture:	2009				
Rated characteristics:	Rated voltage		U _n	415	V
	Rated insulation voltage		U _i	1000	V
	Rated impulse withstand	voltage	U _{imp}	4	kV
	Rated current of the asser	mbly	I _{nA}	730	А
	Rated current of MCCB-in	icomer	I _{nc}	730	А
	Rated current of distribution	on busbars	I _{nc}	730	А
	Rated peak withstand cur	rent	I _{pk}	105	kA
	Rated short-time withstan	d current	I _{cw}	50	kA, 1s
	Rated conditional short-ci	rcuit current	I _{cc}	50	kA
	Rated frequency		fn	50	Hz
	Degree of protection			IP44	
Service condition:	Installation			Indoor	
	Max. ambient temperature	9		50	°C
Dimensions:	Width			2200	mm
	Height			2000	mm
	Depth			600	mm
Busbars:	Main busbar	L1/L2/L3/N	Tinned copper 2 x	20 mm x 10	mm
	PE busbar		Tinned copper 2 x	15 mm x 10	mm
Section 1					
Characteristics	R		In		
Characteristics.	Distribution bushar	1 1/1 2/1 3/N	Tinnod connor	50 mm v 10	mm
	Distribution busbai	L1/L2/L3/IN	rinned copper,	50 1111 X 10	
	Switching device			MCCB	
			TMAX T6S	800 4-pole	
	. , , , , , , , , , , , , , , , , , , ,		Fived	l installation	
	Manufacturer		TIXCO	ARR	
	Rated current			800	А
	Trip level setting			Max	
	,			Max	
Section 2					

Characteristics:

Outgoing cable terminal unit

Not equipped

ASTA

Page 9 of 87

Laboratory Reference No: 3345.2091256.0968

Section 3					
Characteristics:	Distribution busbar	L1/L2/L3	3/N	Outgoing feeder unit Tinned copper, 2 x 20 mm x 10	mm
3B-MCCB-feeder	Rated current Branch busbar	L1/L2/L3/N	I _{nc}	250 Tinned copper, 20 mm x 10	A mm
	Switching device Type			MCCB TMAX T3S 250, 3-pole Fixed installation	
	Manufacturer Rated current Trip level setting			ABB 250 Max	A
3C-MCCB-feeder	Rated current Branch busbar	L1/L2/L3/N	I _{nc}	200 Tinned copper, 20 mm x 10	A mm
	Switching device Type			MCCB TMAX T3S 200, 3-pole Fixed installation	
	Manufacturer Rated current Trip level setting			ABB 200 Max	A
3D-MCCB-feeder	Rated current Branch busbar	L1/L2/L3/N	Inc	100 Tinned copper, 15 mm x 5	A mm
	Switching device Type			MCCB TMAX T2S 160, 3-pole Fixed installation	
	Rated current Trip level setting	7.		ABB 100 Max	A
3A-MCCB-feeder	Rated current Branch busbar	L1/L2/L3/N	I _{nc}	70 Tinned copper, 15 mm x 5	A mm
	Switching device Type			MCCB TMAX T2S 160, 3-pole Fixed installation	
	Manufacturer Rated current Trip level setting			ABB 80 Max	A
	Switching device Type Manufacturer			2 x Contactors A63-30, 3-pole ABB	
	Switching device Type Manufacturer			RCD F204, 80 A, 0.1 A, 4-pole ABB	
	Switching device Type Manufacturer		l	Fuses P51R06, Size 000, 690 V, 100 A OEZ	
	Wiring			Flexible copper cable 35 mm ²	

ASTA

Page 10 of 87

Laboratory Reference No: 3345.2091256.0968

Technical data and characteristics (continued)

Section 4				
Characteristics:			Outgoing feeder unit	
4A-MCCB-feeder	Rated current Branch busbar	I _{nc} L1/L2/L3/N	10 Tinned copper, 15 mm x 5	A mm
	Switching device Type		MCCB TMAX T2S 160, 3-pole Fixed installation	
	Manufacturer Rated current Trip level setting		ABB 16 Max	A
	Switching device Type Manufacturer		Contactor A16-30-10, 3-pole ABB	
	Switching device Type Manufacturer		RCD F204, 25 A, 0.1A, 4-pole ABB	
	Switching device Type Manufacturer		Fuses P51R06, Size 000, 690 V, 16 A OEZ	
	Wiring	9	Flexible copper cable 4 mm ²	
	NNN	1.111		

2.2 **Identity documents**

The manufacturer confirms that the test object has been manufactured in compliance with the drawings given in this document. IPH have verified that the drawings submitted by the client and detailed in this test report represent the apparatus tested in all essential details with respect of the characteristics to be proven by the tests.

The identity of the test object is fixed by the following drawings and data submitted by the client.

Name of drawing/list	Drawing No.	Date of drawing	Author	Notes
GENERAL ARRANGEMENT OF 800 A TEST ASSEMBLY	TTA/09/BCS/800-G1 SHEET NO 1 OF 6	04.01.2010	BCS	Page 81
GENERAL ARRANGEMENT OF 800 A TEST ASSEMBLY	TTA/09/BCS/800-G2 SHEET NO 2 OF 6	04.01.2010	BCS	Page 82
GENERAL ARRANGEMENT OF BUSBAR SYSTEM	TTA/09/BCS/800-G3 SHEET NO 3 OF 6	04.01.2010	BCS	Page 83
BUSBAR ARRANGEMENT FIELD-1	TTA/09/BCS/800-F1 Sheet NO 4 OF 6	04.01.2010	BCS	Page 84
BUSBAR ARRANGEMENT FIELD-3	TTA/09/BCS/800-F3 SHEET NO 5 OF 6	04.01.2010	BCS	Page 85
SLD OF THE 800 A TEST ASSEMBLY	TTA/09/BCS/800-SLD SHEET NO 6 OF 6	04.01.2010	BCS	Page 86
LIFTING INSTRUCTIONS	-	18.09.2008	ELSTEEL	Page 87
BILL OF QUANTITY	-	13.01.2010	BCS	*)

*) These drawings/lists were submitted for the identification of the test object. They are not part of this test document and are retained in the IPH archive.

Test objects received by IPH on: 17 December 2009

joet Manual

J. Haring

Laboratory Reference No: 3345.2091256.0968

3. Verification of the resistance to corrosion

3.1 Test laboratory

RST Rail System Testing GmbH, Environmental Lab, 16761 Hennigsdorf, Germany

3.2 Normative document

IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.2.2.2, severity level A

3.3 Required test parameters

3.3.1 Test Db: Damp heat, cyclic (12 + 12 hour cycle)

Lower temperature:(25 ±3) °Crelative humidity:95 % ... 100 %Higher temperature:(40 ±2) °Crelative humidity:9 % ... 96 %Number of cycles:66

3.3.2 Test Ka: Salt mist

Temperature:	(35 ±2) °C
Salt solution:	5 % sodium chloride (NaCI) solution
pH value:	6.5 7.2
duration of test:	two days

Acceptance conditions:

- no more than 1% rust covered area for a rust degree Ri 1 allowed
- doors, hinges, locks and fastenings elements must be able to be operated without extreme expenditure of energy.

3.4 Test arrangement

IEC 61439-1: 2009-01, Sub-clause 10.2.2; severity A

The test was carried out on a representative sample the same constructional details as the enclosure itself.

3.5 Test and measuring circuits

Climate test chamber type HC 7057 (Vötsch) Salt mist test chamber type HSK 1000 (Vötsch)

3.6 Test results

Date of test:

21 December to 28 January 2010

The enclosure was tested according to the relevant specification. Changes at the specimens were detected in comparison with the initial state of the specimens with normal eyes at the inspections after the tests.

The determined corrosion phenomena lie - referred to the total area of the specimens - in the limit of the demands for the rust degree Ri1.

4. Verification of resistance of insulating materials to normal heat

4.1 **Test laboratory**

Low-voltage test laboratory, test room 9

4.2 Normative document

IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.2.3.2

4.3 **Required test parameters**

The test temperature was:

(125 ±2) °C for parts necessary to retain current carrying parts in position

4.4 Test arrangement

IEC 61439-1: 2009-01, Sub-clause 10.2.3.2

4.5 Technical data and characteristics

The technical data and characteristics of the test specimen are defined by the following parameters and specified by the client.

TON

Test specimen	Material	Name / Part	Test temperature	Notes
1	ВН	BH6	125 °C	-
2	UBH	UBH2	125 °C	-

Laboratory Reference No: 3345.2091256.0968

4.6 Test results

Date of test:

07 January 2010

Test specimen	Test temperature	Duration of test t_a	Diameter of the imprint	Evaluation
	[°C]	Minutes	mm	
1	125	60	No imprint of the sphere	Passed
2	125	60	No imprint of the sphere	Passed
Notes: t _a : Du In the cas	ration of stay ir se of all test spo	n a heating cabi	net int of the sphere present.	

Notes:

5. Verification of the resistance of insulating materials to abnormal heat and fire due to internal electric effects

5.1 **Test laboratory**

Low-voltage test laboratory, test room 3

5.2 Normative document

IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.2.3.3

5.3 **Required test parameters**

The test temperature was:

960 °C for parts necessary to retain current carrying parts in position

5.4 Test arrangement

IEC 61439-1: 2009-01, Sub-clause 10.2.3.3

5.5 Technical data and characteristics

The technical data and characteristics of the test specimen are defined by the following parameters and specified by the client.

CON

Test specimen	Material	Name / Part	Test temperature	Notes
1	BH	BH6	960 °C	-
2	UBH	UBH2	960 °C	-

Laboratory Reference No: 3345.2091256.0968

5.6 **Test results**

Date of test:

11 January 2010

Test specimen	Test temperature	Duration of test t _a	ti	t _e	Height of the flame	Soft tissue inflamed	Evaluation
	[°C]	s	s	s	mm		
1	960	30	27	30	5	No	Passed
2	960	30	0	33	60	No	Passed

Notes:

Duration of action of glow-wire t_a:

- Duration from start of glow-wire application until the moment, when the test specimen t_i: ignites.
- r momer Duration from start of glow-wire application until the moment, when the flames go out t_e: during test or after completion of test.

In the case of all test specimen no flame present.

Laboratory Reference No: 3345.2091256.0968

6. Lifting

6.1 Test laboratory

Low-voltage test laboratory, test room 10

6.2 Normative document

IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.2.5

6.3 Required test parameters

The test object was equipped with weights to achieve a weight of 1.25 times its maximum shipping weight.

Shipping weight [kg]	Additional weight [kg]
750	188

6.4 Test arrangement

The test was carried out on the test object according to the lifting instruction of the manufacturer (see page 87) by using a forklift. The test object stood on a palette.

Dimensions of the test object:	Width	2200	mm
	Height	2000	mm
	Depth	600	mm
Dimensions of the pallet:	Width	2600	mm
	Depth	1000	mm
Distance between the forks:	Width	1100	mm

6.5 Test results

Date of test: 23 August 2010

No deflections during the test and no cracks or permanent distortions which could impair any of its characteristics, present.

Laboratory Reference No: 3345.2091256.0968

Verification of mechanical impact 7.

7.1 **Test laboratory**

Low-voltage test laboratory, test room 10

7.2 Normative document

IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.2.6 IEC 62262: 2002-02

The degree of protection against impact is defined by the code IK 01 The impact energy is 0.14 Joule.

7.4 Test arrangement

The test was carried out on a five selected points of enclosure (doors, walls). The number of impacts was one per selected point.

Test and measuring devices 7.5

Pendulum hammer according to IEC 60068-2-75 Annex D

7.6 **Test results**

Date of test: 11 January 2010

No visible damages to the surface of the enclosure. The safety and the reliability of the equipment are not reduced in comparison with the initial state.

Laboratory Reference No: 3345.2091256.0968

8. Marking

8.1 Test laboratory

Low-voltage test laboratory, test room 3

8.2 Normative document

IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.2.7

8.3 Required test parameters

Rubbing the markings by hand for 15 s with

- a piece of cloth soaked in water
- a piece of cloth soaked with petroleum spirit

After test the marking shall be legible to normal or corrected vision without additional magnification.

COR

8.4 Test arrangement

Front marking of incomer was chosen as representative test sample.

8.5 Test and measuring circuits

- Cotton cloth
- water
- petroleum ether 60 70 (aromatics < 0.01 %, density 0.68 g/cm³, boiling point 60 70°C)

8.6 Test results

Date of test: 11 January 2010

After test, there was no change in the marking. Font and symbols remained clearly visible.

9. Degree of protection of enclosures

9.1 Degree of protection against access to hazardous parts and against solid foreign objects - IP4X

9.1.1 Test laboratory

Low-voltage test laboratory, test room 3

9.1.2 Normative document

IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.3 IEC 60529: 2001-02

9.1.3 Required test parameters

Test probe Rigid test wire of 1 mm diameter, 100 mm length Test force $1 N \pm 10 \%$

The test probe shall not penetrate the enclosure of the test object anywhere.

9.1.4 Test arrangement

Using the above-mentioned test probe and the respective pressure force it was tried to penetrate into the enclosure at appropriate points (e.g. ventilation openings).

9.1.5 Test and measuring circuits

IP4X test probe:

Rigid steel wire of 1 mm diameter (IEC 60529: 2001-02, Table 7), with integrated spring energy meter

CON

9.1.6 Test results

Date of test: 05 January 2010

The test object was as tight on all tested sides that the object probe, 1-mm wire, was not able to penetrate into the enclosure at a test force of 1 N.

Laboratory Reference No: 3345.2091256.0968

9.2 Degree of protection against ingress of water – IPX4

9.2.1 Test laboratory

High-voltage test laboratory, wet test room

9.2.2 Normative document

IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.3 IEC 60529: 2001-02

9.2.3 Required test parameters

Protection against splashing water

Test device	
Water flow rate	
Water pressure	
Duration of test	
Distance between spray	
nozzle and the test object	

ter Spray nozzle (10 ± 0.5) l/min + 180° from the vertical (100 ± 50) kPa 5 minutes 300 – 500 mm 24°C

Ambient air temperature

9.2.4 Test arrangement

The test object was placed in its normal position of use.

9.2.5 Test results

Date of test: 24 June 2010

After opening of the test sample, no water was found inside.

Laboratory Reference No: 3345.2091256.0968

10. Verification of clearances and creepage distances 10.1 Test laboratory Low-voltage test laboratory, test room 3 10.2 Normative document IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.4 10.3 Required test parameters Minimum clearances and creepage distances (at \leq 2000 m above SL, degree of pollution 3 and material group IIIa, inhomogeneous field): Main circuits Auxiliary circuits Clearances ≥ 3 mm \geq 8 mm Creepage distances ≥ 16 mm ≥ 5 mm 10.4 Test arrangement All doors were open. Side covers and all modules removed for visual inspection. 10.5 Test and measuring circuits The creepage distances and clearances were checked by inspection gauges. 10.6 Test results Date of test: 20 January 2010 Main circuits Minimum clearances measured: 8 mm (RCD in unit 3, between wire end ferrules) Minimum creepage distance measured: 16 mm (Contactor A63-30 terminals in unit 3) Auxiliary circuits Minimum clearances measured: 6 mm (Relay terminals in unit 3 and 4) 8 mm (Relay terminals in unit 3 and 4) Minimum creepage distance measured:

Laboratory Reference No: 3345.2091256.0968

11. Verification of protection against electric shock and integrity of the protective circuit

11.1 Test laboratory

Low-voltage test laboratory, test room 10

11.2 Normative document

IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.5.1

11.3 Required test parameters

- Verification of the effective earth continuity between the exposed conductive parts of the assembly and the protective circuit

Resistance shall not exceed 0.1 Ω .

- Verification of the short-circuit withstand strength of the PE busbar

Peak current	63 kA
Short-circuit current	30 kA 🤇 (0.6 x 50 kA)
Duration of short-circuit	1 s
11.4 Test arrangement	•
According to IEC 61439-1, Sub-claus	e 10.11.5.6.1

Laboratory Reference No: 3345.2091256.0968

11.5 Test and measuring circuits

Technical data of test equipment for verification of effective earth continuity

Resistance measuring bridge Microohmmeter Theta	R _{max}	= 20 mΩ
	I _{max}	= 90 A

Technical data of test circuits for test of short-circuit withstand strength

Diagram 1: Test circuit for test of short-circuit withstand strength

Technical data of measuring circuits for test of short-circuit withstand strength

Measuring point Measured quantity		Measuring sensor/device	
1	Short-circuit current	Rogowski measuring device	
2	Voltage	RC divider	

ΓΑ

Page 25 of 87

AS

Laboratory Reference No: 3345.2091256.0968

11.6 Test results

• Verification of the effective earth continuity

Date of test:

05 January 2010

The resistance measured between the incoming protective conductor and different exposed conductive parts did not exceed 2.9 m $\Omega.$

• Verification of short-circuit withstand strength of the protective circuit

Date of test:	15 January 2010
Connection of the test object:	By copper bar of 100 mm x 10 mm to the main busbar L1 and PE
Short-circuit point:	By copper bar of 50 mm x 10 mm at the incoming feeder between L1 and PE
Ambient temperature:	18 °C

Test No.		1010 0073
Test duty		I _{pk} , I _{cw}
Peak current	kA	63.5
Short-circuit current	kA	30.3
Duration of short-circuit	ms	1014
l ² t	10 ⁶ A ² s	932
Equivalent 1-s current	kA	30.5
R _{PE} before/after test	μΩ	205 / 195
Notes	~	-
Evaluation		ок

Notes:

Condition of test object after test:

OK - Conductors and busbars did not show any undue deformation.

The supporting insulating parts did not show any significant signs of deterioration. There was no loosening of parts used for the connection of conductors and conductors did not separate from the outgoing terminals.

Laboratory Reference No: 3345.2091256.0968

12. Verification of the dielectric properties 12.1 Test laboratory Low-voltage test laboratory, test room 3 12.2 Normative document IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.9 12.3 Required test parameters Power-frequency withstand voltage Test AC voltage Main circuits 2200 V Auxiliary circuits 1500 V Frequency 50 Hz Duration of test 5 s each Impulse withstand voltage Impulse voltage (1.2/50 µs) Main/distribution busbars 9.8 kV MCCB-feeder without RCD 9.8 kV MCCB-feeder with RCD 4.8 kV Polarity Positive and negative Number of impulses 5 each 12.4 Test arrangement

For test 1, all MCCBs and RCDs were switched on. The test voltage was supplied to the main busbar in unit 1.

The contactor contacts were bridged with copper wires.

For test 2, the RCDs were switched off.

12.5 Test and measuring circuits

Technical data of test device:

AC voltage test device HA2000 E	u _{max} =	5	kV, 50 Hz
	I _{max} =	200	mA
Modular impulse generator MIG 0603	u _{max} =	12	kV
	i _{max} =	6	kA

Laboratory Reference No: 3345.2091256.0968

12.6 Test results

Date of test: 12 January 2010

Power-frequency withstand voltage

Main busbars, distribution busbars, MCCB-feeder

Voltage for 5 s to	Earthed	insulation voltage	Test voltage kV	Result ¹⁾ Number of punctures or flash-overs	
L1, L2, L3, N	PE, U	1000	2.2	0	
L1	L2, L3, N, PE, U	1000	2.2	0	
L2	L1, L3, N, PE, U	1000	2.2	0	
L3	L1, L2, N, PE, U	1000	2.2	0	
Ν	L1, L2, L3, PE, U	1000	2.2	0	
Auxiliary circuits					

Auxiliary circuits

Voltage for 5 s to	Earthed	Rated insulation voltage Earthed V		Result ¹⁾ Number of punctures or flash-overs
L, N	PE, U	300	1.5	0

Notes:

- Enclosure of the unit tested U
- No puncture or flash-over is permitted. 1)

Impulse withstand voltage Test 1

Main busbars, distribution busbars, MCCB-feeder (RCD switched on)

		Rated impulse voltage withstand strength	Test voltage ¹⁾	Result ³⁾
Voltage applied to	Earthed	kV	kV	No. of impulses/disruptive discharges
L1. L2. L3. N	PE, U	4	+ 4.8	5/0
_ , <u>_</u> , <u>_</u> , <u>_</u> , <u>,</u>	, •	·	- 4.8	5/0
L1	L2. L3. N. PE. U	4	+ 4.8	5/0
	,,,,, _		- 4.8	5/0
12	L1. L3. N. PE. U	4	+ 4.8	5/0
	,,,, .		- 4.8	5/0
13	1112 N PF U	4	+ 4.8	5/0
20	L 1, LL, 11, 1 L, O		- 4.8	5/0
N		л	+ 4.8	5/0
	\Box		- 4.8	5/0

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Impulse withstand voltage Test 2

Main busbars, distribution busbars, MCCB-feeder (RCD switched off)

		Rated impulse voltage withstand strength	Test voltage ¹⁾	Result ²⁾		
Voltage applied to	Earthed	kV	kV	No. of impulses/disruptive discharges		
L1, L2, L3, N	PE, U	8	+ 9.8 - 9.8	5/0 5/0		
L1	L2, L3, N, PE, U	8	+ 9.8 - 9.8	5/0 5/0		
L2	L1, L3, N, PE, U	8	+ 9.8 - 9.8	5/0		
L3	L1, L2, N, PE, U	8	+ 9.8 - 9.8	5/0 5/0		
N	L1, L2, L3, PE, U	8	+ 9.8 - 9.8	5/0 5/0		
Notes:						
U Enclosure of the unit tested						

Notes:

- Enclosure of the unit tested U
- Required test parameter according to IEC 61439-1: 2009-01 1)
- 2) According to IEC 61439-1: 2009-01, no disruptive discharge is permitted. , di

Laboratory Reference No: 3345.2091256.0968

13. Verification of temperature rise by testing with current 13.1 Test laboratory Low-voltage test laboratory, test room 3 13.2 Normative document IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.10.2.3.6 13.3 Required test parameters Test currents: 3-phase, 50 Hz 730 A Main busbar: MCCB-incomer: 730 A Distribution busbar: 730 A Verification of individual function units: 3A-MCCB-feeder: 70 A 3B-MCCB-feeder: 250 A 3C-MCCB-feeder: 200 A 3D-MCCB-feeder: 100 A 4A-MCCB-feeder: 10 A Verification of the assembly: Rated diversity factor: 0.8 3A-MCCB-feeder: 56 A (0.8 x 70 A) 3B-MCCB-feeder: 200 A (0.8 x 250 A) 3C-MCCB-feeder: 160 A (0.8 x 200 A) 3D-MCCB-feeder: 80 A (0.8 x 100 A)

13.4 Test arrangement

The test object was tested three-phase, in free-standing arrangement. It was standing on its original transport pallet.

The right and left side walls were insulated with expanded polystyrene board.

The assembly was connected by flexible insulated copper cables of 4 m length and cross-section according to the table below.

Circuit	Test cable cross-section	
MCCB-incomer		
3A-MCCB-feeder		
3B-MCCB-feeder	According Table 11, IEC 61439-1	
3C-MCCB-feeder		
3D-MCCB-feeder		
4A-MCCB-feeder		

Test arrangement (continued)

All unused openings for cable connections in the bottom cable gland plates were sealed to have airflow only through the installed ventilation louvers.

The auxiliary voltage of 230V AC was permanently connected.

In unit 3 heating resistors were installed in the 4 feeder compartments to simulated power losses of outgoings for test of unit 4.

13.5 Test and measuring circuits

Diagram 2: Circuit for temperature-rise tests, single line diagram

E Supply transformer

R Load resistors

I Current measurement

Laboratory Reference No: 3345.2091256.0968

Test and measuring circuits (continued)

Diagram 3: Arrangement of selected temperature-measuring points

Laboratory Reference No: 3345.2091256.0968

Test and measuring circuits (continued)

Diagram 4: Arrangement of selected temperature-measuring points in unit 3

٠

Measuring point	Measured quantity	Measuring sensor/device
1	Current	Current transformers / digital displays
1 - 45	Temperature	Cu/constantan thermocouples Therm 5500-3

ASTA

Page 33 of 87

Laboratory Reference No: 3345.2091256.0968

ASTA Page 34 of 87

13.6 Test results

Date of test:	06 January 2010
Test requirement:	Verification of individual function units 3B-MCCB-feeder
Test current main/distribution busbar:	730 A
Test current 3A-MCCB-feeder:	250 A

Ambient air temperature: 17.9 °C¹⁾

Measuring points		Classification / Designation	Material	Temperature-rise limit permitted at a max. ambient air temp. of 50 °C	Final temperature	Final temperature rise
				in K	in °C	in K
	L1				60.8	42.9
1	L2	Incoming cable terminal	Tinned copper	55	67.1	49.2
	L3				61.9	44.0
	L1				80.7	62.8
2	L2	Lower MCCB terminals	Silver-plated copper	70 ²⁾	87.0	69.1
	L3				81.9	64.0
	L1				81.9	64.0
3	L2	Upper MCCB terminals	Silver-plated copper	70 ²⁾	87.3	69.4
	L3				85.6	67.7
4	-	Operating handle of incoming MCCB	Plastics	10	19.6	1.7
5	-	Air near MCCB	-	-	31.5	-
	L1				58.5	40.6
6	L2	Vertical busbar connection	Tinned copper	70 ²⁾	62.3	44.4
	L3				59.6	41.7
	L1				57.5	39.6
7	L2	Connection Main/vertical bushar	Tinned copper	70 ²⁾	58.8	40.9
	L3				56.2	38.3
8	-	Max. front temperature incomer	Metal	15	27.7	9.8
	L1		•		59.6	41.7
9	L2	Main busbar joint	Tinned copper	70 ²⁾	61.4	43.5
	L3				58.3	40.4
	L1	Connection			55.3	37.4
10	L2	Main/distribution busbar	Tinned copper	70 ²⁾	56.2	38.3
	L3	main busbar side			53.6	35.7
	L1	Connection			55.7	37.8
11	L2	Main/distribution busbar	Tinned copper	70 ²⁾	58.8	40.9
	L3	distribution busbar side			54.2	36.3
	L1	Connection			52.8	34.9
22	L2	distribution/feeder husbar	Tinned copper	70 ²⁾	56.0	38.1
	L3				52.9	35.0
	L1				75.4	57.5
23	L2	Outgoing terminals of MCCB	Silver-plated copper	70 ²⁾	78.3	60.4
	L3				54.8	36.9
	L1				60.1	42.2
24	L2	Outgoing cable terminal	Tinned copper	55	62.3	44.4
	L3				57.0	39.1
25	-	Air inside compartment	-	_	37.8	-
26	-	Operating handle of feeder MCCB	Plastics	10	20.3	2.4

Notes:

1) Average of 3 measuring points

2) Value specified by the manufacturer

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Test requirement:

06 January 2010 Verification of individual function units 3C-MCCB-feeder 730 A

200 A

19.1 °C ¹⁾

Test current main/distribution busbar: Test current 3C-MCCB-feeder: Ambient air temperature:

Measuring points		Classification / Designation	Material	Temperature-rise limit permitted at a max. ambient air temp. of 50 °C	Final temperature	Final temperature rise
				in K	in °C	in K
1	L1	Incoming cable terminal	Tinned copper	55	61.8	42.7
	L2				68.0	48.9
	L3				62.7	43.6
2	L1	Lower MCCB terminals	Silver-plated copper	70 ²⁾	81.9	62.8
	L2				88.0	68.9
	L3				82.6	63.5
3	L1	Upper MCCB terminals	Silver-plated copper	70 ²⁾	82.8	63.7
	L2				88.2	69.1
	L3				86.6	67.5
4	-	Operating handle of incoming MCCB	Plastics	10	20.0	0.9
5	-	Air near MCCB	-	-	31.8	-
6	L1	Vertical busbar connection	Tinned copper	70 ²⁾	59.4	40.3
	L2				62.9	43.8
	L3				60.5	41.4
7	L1	Connection Main/vertical busbar	Tinned copper	70 ²⁾	58.5	39.4
	L2				59.7	40.6
	L3				57.0	37.9
8	-	Max. front temperature incomer	Metal	15	27.7	8.6
9	L1	Main busbar joint	Tinned copper	70 ²⁾	60.7	41.6
	L2				62.3	43.2
	L3				59.2	40.1
10	L1	Connection Main/distribution busbar main husbar side	Tinned copper	70 ²⁾	56.0	36.9
	L2				57.0	37.9
	L3				54.2	35.1
11	L1	Connection Main/distribution busbar distribution busbar side	Tinned copper	70 ²⁾	56.2	37.1
	L2				59.5	40.4
	L3				54.7	35.6
27	L1	Connection distribution/feeder busbar	Tinned copper	70 ²⁾	47.4	28.3
	L2				51.0	31.9
20	LO	Incoming terminals of MCCP	Silver plated copper	70 ²)	47.5	20.4
20	LZ	Incoming terminals of MCCB	Silver-plated copper	70 /	57.5	30.4
29	L1	Outgoing terminals of MCCB	Silver-plated copper	70 ²⁾	60.8	41.7
	L2				<u> </u>	44.0
30		Outgoing cable terminal	Tinned copper	55	51.9	33.0
	L1 12				50.8	32.2 31.7
	13				47 0	27.0
21	LJ	Air incide compartment			21.0	21.3
51	-		-	-	51.0	-
32	-	feeder MCCB	Plastics	10	20.4	1.3

Notes:

1) Average of 3 measuring points

2) Value specified by the manufacturer
Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Test requirement:

06 January 2010 Verification of individual function units 3D-MCCB-feeder 730 A

100 A

18.7 °C ¹⁾

Test current main/distribution busbar: Test current 3D-MCCB-feeder: Ambient air temperature:

Mea pc	suring bints	Classification / Designation	Material	Temperature-rise limit permitted at a max. ambient air temp. of 50 °C	Final temperature	Final temperature rise
				in K	in °C	in K
	L1				61.6	42.9
1	L2	Incoming cable terminal	Tinned copper	55	67.9	49.2
	L3				62.7	44.0
	L1				81.5	62.8
2	L2	Lower MCCB terminals	Silver-plated copper	70 ²⁾	87.6	68.9
	L3				82.4	63.7
	L1				82.2	63.5
3	L2	Upper MCCB terminals	Silver-plated copper	70 ²⁾	87.5	68.8
	L3				86.1	67.4
4	-	Operating handle of incoming MCCB	Plastics	10	20.0	1.3
5	-	Air near MCCB	-	-	31.8	-
	L1				59.3	40.6
6	L2	Vertical busbar connection	Tinned copper	70 ²⁾	62.6	43.9
	L3				60.7	42.0
	L1	Connection			58.6	39.9
7	L2	Main/vertical busbar	Tinned copper	70 ²⁾	59.6	40.9
	L3				57.2	38.5
8	-	Max. front temperature incomer	Metal	15	27.8	9.1
	L1				62.3	43.6
9	L2	Main busbar joint	Tinned copper	70 2)	60.6	41.9
	L3				59.1	40.4
	L1	Connection			56.0	37.3
10	L2	Main/distribution busbar	Tinned copper	70 ²⁾	56.8	38.1
	L3	main busbar side			54.2	35.5
	L1	Connection		0	55.8	37.1
11	L2	Main/distribution busbar	Tinned copper	70 ²⁾	59.1	40.4
	L3	distribution busbar side			54.5	35.8
	L1	Connection		2)	46.6	27.9
33	L2	distribution/feeder busbar	Tinned copper	70 ²⁾	51.2	32.5
	L3				49.1	30.4
	L1			2)	51.0	32.3
34	L2	Outgoing terminals of MCCB	Silver-plated copper	70 ²)	51.1	32.4
	L3				43.0	24.3
	L1				42.7	24.0
35	L2	Outgoing cable terminal	Tinned copper	55	45.6	26.9
	L3				37.2	18.5
36	-	Air inside compartment	-	-	30.0	-

Notes:

- 1) Average of 3 measuring points
- 2) Value specified by the manufacturer

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Date of test: Test requirement: 07 January 2010 Verification of individual function units 3A-MCCB-feeder

730 A

70 A 19.3 °C ¹⁾

Test current main/distribution busbar: Test current 3A-MCCB-feeder: Ambient air temperature:

Mea: po	suring ints	Classification / Designation	Material	Temperature-rise limit permitted at a max. ambient air temp. of 50 °C	Final temperature	Final temperature rise
				in K	in °C	in K
	L1				62.6	43.3
1	L2	Incoming cable terminal	Tinned copper	55	68.3	49.0
	L3				63.1	43.8
	L1				82.5	63.2
2	L2	Lower MCCB terminals	Silver-plated copper	70 ²⁾	87.9	68.6
	L3				81.6	62.3
	L1				87.0	67.7
3	L2	Upper MCCB terminals	Silver-plated copper	70 2/	83.8	64.5
	L3				88.2	68.9
4	-	Operating handle of incoming MCCB	Plastics	10	20.8	1.5
5	-	Air near MCCB	-		33.0	-
	L1				61.3	42.0
6	L2	Vertical busbar connection	Tinned copper	70 ²⁾	64.3	45.0
	L3				62.2	42.9
_	L1	Connection			60.4	41.1
7	L2	Main/vertical busbar	Tinned copper	70 2)	61.4	42.1
	L3				59.1	39.8
8	-	Max. front temperature incomer	Metal	15	27.8	8.5
•	L1			70 ²)	62.6	43.3
9	L2	Main busbar joint	Tinned copper	70-	64.3	45.0
	L3				61.1	41.8
10	L1	Connection	Tinned conner	70 ²⁾	58.8	39.5
10	L2	main husbar side	Timed copper	70	59.2	39.9
	L3				56.5	37.2
11	L1	Connection Main/distribution bushar	Tinned conner	70 ²⁾	59.1	39.8
	L2	distribution busbar side	Timica copper	10	57.6	42.0
					57.0	30.3
12		Connection	Tinned copper	70 ²⁾	50.7	39.4
	13	distribution/feeder busbar	inned copper		58.7	39.4
	11				83.8	64.5
13	12	Outgoing terminals of MCCB	Silver-plated copper	70 ²⁾	84.0	64 7
	L3	0			73.1	53.8
14	L2	Terminal RCD	Silver-plated copper	70 ²⁾	78.4	59.1
15	L2	Terminal contactor 1	Silver-plated copper	70 ²⁾	81.1	61.8
16	L2	Terminal fuse base	Silver-plated copper	70 ²⁾	85.5	66.2
17	L2	Terminal contactor 2	Silver-plated copper	70 ²⁾	64.6	45.3
	L1				46.0	26.7
18	L2	Outgoing cable terminal	Tinned copper	55	46.8	27.5
	L3				45.1	25.8
19	-	Air inside compartment	-	-	39.3	-
20	-	Operating handle of incoming MCCB	Plastics	10	23.3	4.0
21		Max. front temperature unit 3	Metal	15	30.3	11.0

Notes:

1) Average of 3 measuring points

2) Value specified by the manufacturer

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Date of test:	07 January 20	10	
Test requirement:	Verification of 4A-MCCB-fee	individual func der	tion units
Test current main busbar:	730 A		
Test current 4A-MCCB-feeder:	10 A		
Heat resistors in unit 3:	50 W / 50 W /	30 W / 30 W	
Ambient air temperature:	20.3 °C ¹⁾		
	NA 4 1 1	T ()	

Mea: po	suring bints	Classification / Designation	Material	Temperature-rise limit permitted at a max. ambient air temp. of 50 °C	Final temperature	Final temperature rise
				in K	in °C	in K
	L1				59.4	39.1
1	L2	Incoming cable terminal	Tinned copper	55	66.1	45.8
	L3				61.4	41.1
	L1				78.5	58.2
2	L2	Lower MCCB terminals	Silver-plated copper	70 ²⁾	85.4	65.1
	L3				80.9	60.6
	L1				80.6	60.3
3	L2	Upper MCCB terminals	Silver-plated copper	70 ²⁾	85.4	65.1
	L3				84	63.7
5	-	Air near MCCB	-	-	31.7	-
	L1				57.8	37.5
6	L2	Vertical busbar connection	Tinned copper	70 ⁻²⁾	61.4	41.1
	L3				58.3	38.0
	L1	Connection			56.7	36.4
7	L2	Main/vertical busbar	Tinned copper	70 ²⁾	58.1	37.8
	L3				55.1	34.8
	L1			2)	58.8	38.5
9	L2	Main busbar joint	Tinned copper	70 ²⁾	60.9	40.6
	L3				57.3	37.0
	L1	Connection		2)	52.3	32.0
10	L2	Main/distribution busbar	Tinned copper	70 ²⁾	52.9	32.6
	L3	main busbar side			50.3	30.0
	L1	Connection			52.9	32.6
37	L2	Main/feeder busbar	Tinned copper	70 2)	55.3	35.0
	L3			2)	51.8	31.5
38	L2	Outgoing terminals of MCCB	Silver-plated copper	70 ²	40.8	20.5
39	L2	Terminal RCD	Silver-plated copper	70 ²⁾	36.9	16.6
40	L2	Terminal fuse base	Silver-plated copper	70 ²⁾	43.2	22.9
41	L2	Terminal contactor	Silver-plated copper	70 ²⁾	36.5	16.2
42	-	Air inside compartment	-	-	26.9	-
	L1				28.2	7.9
43	L2	Outgoing cable terminal	Tinned copper	55	28.2	7.9
	L3				27.5	7.2
44	-	Operating handle of incoming MCCB	Plastics	10	21.6	1.3
45	-	Max, front temperature unit 4	Metal	15	27.1	6.8

Notes:

1) Average of 3 measuring points

2) Value specified by the manufacturer

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Date of test:	08 January 2010
Test requirement:	Verification of the assembly, RDF: 0.8
Test current main/distribution busbar:	730 A
Test current 3A-MCCB-feeder:	56 A (0.8 x 70 A)
Test current 3B-MCCB-feeder:	200 A (0.8 x 250 A)
Test current 3C-MCCB-feeder:	160 A (0.8 x 200 A)
Test current 3D-MCCB-feeder:	80 A (0.8 x 100 A)
Spill current taken at the end of the	
distribution busbar:	234 A
Ambient air temperature:	20.8 °C ¹⁾

Mea po	suring bints	Classification / Designation	Material	Temperature-rise limit permitted at a max. ambient air temp. of 50 °C in K	Final temperature	Final temperature rise in K
	11				63.5	12.7
1	12	Incoming cable terminal	Tinned copper	55	60.7	42.7
	1.2	incoming cable terminal			64.2	40.9
	LJ				04.3	43.3
2	L1	Lower MCCB terminals	Silver-plated conner	70 ²⁾	83.0	62.8
~	LZ				09.3 84.1	63.3
					04.1	62.7
3		Upper MCCB terminals	Silver-plated copper	70 ²⁾	04.3	69.0
Ŭ	13		cirror plated copper		87.3	66.5
	20	Operating handle of			07.0	00.0
4	-	incoming MCCB	Plastics	10	20.9	0.1
5	-	Air near MCCB		-	34.1	-
	L1				61.8	41.0
6	L2	Vertical busbar connection	Tinned copper	70 ²⁾	65.8	45.0
	L3				62.9	42.1
	L1	Connection			60.7	39.9
7	L2	Main/vertical busbar	Tinned copper	70 ²⁾	62.1	41.3
	L3				59.6	38.8
-						
8	-	Max. front temperature incomer	Metal	15	29.8	9.0
8	- L1	Max. front temperature incomer	Metal	15	29.8 62.9	9.0 42.1
8	- L1 L2	Max. front temperature incomer	Metal Tinned copper	15 70 ²⁾	29.8 62.9 64.9	9.0 42.1 44.1
9	- L1 L2 L3	Max. front temperature incomer	Metal Tinned copper	15 70 ²⁾	29.8 62.9 64.9 61.7	9.0 42.1 44.1 40.9
9	- L1 L2 L3 L1	Max. front temperature incomer Main busbar joint Connection	Metal Tinned copper	15 70 ²⁾	29.8 62.9 64.9 61.7 58.9	9.0 42.1 44.1 40.9 38.1
8 9 10	- L1 L2 L3 L1 L2	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar	Tinned copper	15 70 ²⁾ 70 ²⁾	29.8 62.9 64.9 61.7 58.9 59.7	9.0 42.1 44.1 40.9 38.1 38.9
9 10	- L1 L2 L3 L1 L2 L2 L3	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side	Metal Tinned copper Tinned copper	15 70 ²⁾ 70 ²⁾	29.8 62.9 64.9 61.7 58.9 59.7 57.0	9.0 42.1 44.1 40.9 38.1 38.9 36.2
9 10	- L1 L2 L3 L1 L2 L2 L3 L1	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection	Tinned copper	15 70 ²⁾ 70 ²⁾	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7
8 9 10 11	- L1 L2 L3 L1 L2 L3 L1 L1 L2	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar	Tinned copper Tinned copper Tinned copper	15 70 ²⁾ 70 ²⁾ 70 ²⁾	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7
8 9 10 11	- L1 L2 L3 L1 L2 L3 L3 L1 L2 L3	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar side	Tinned copper Tinned copper Tinned copper	15 70 ²⁾ 70 ²⁾ 70 ²⁾	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2
9 10 11	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar side Connection	Metal Tinned copper Tinned copper Tinned copper	15 70 ²⁾ 70 ²⁾ 70 ²⁾	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5
8 9 10 11 12	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar side Connection distribution/feeder busbar	Metal Tinned copper Tinned copper Tinned copper Tinned copper	15 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2)	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3 62.5	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5 41.7
8 9 10 11 12	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar side Connection distribution/feeder busbar	Metal Tinned copper Tinned copper Tinned copper Tinned copper	15 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2)	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3 62.5 59.4	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5 41.7 38.5 41.7 38.6
8 9 10 11 12	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L1	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar side Connection distribution/feeder busbar	Metal Tinned copper Tinned copper Tinned copper Tinned copper	15 70 ²⁾ 70 ²⁾ 70 ²⁾ 70 ²⁾	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3 62.5 59.4 65.8	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5 41.7 38.6 45.0
8 9 10 11 12 13	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar side Connection distribution/feeder busbar Outgoing terminals of MCCB	Metal Tinned copper Tinned copper Tinned copper Tinned copper Silver-plated copper	15 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2)	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3 62.5 59.4 65.8 66.6	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5 41.7 38.6 45.0
8 9 10 11 12 13	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar side Connection distribution/feeder busbar Outgoing terminals of MCCB	Metal Tinned copper Tinned copper Tinned copper Tinned copper Silver-plated copper	15 70 ²)	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3 62.5 59.4 65.8 66.6 58.7	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5 41.7 38.6 45.0 45.8 37.9
8 9 10 11 12 13 14	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L1 L2 L3 L1 L1 L2 L3 L1 L1 L2 L3 L1 L1 L2 L3 L1 L1 L2 L3 L1 L1 L2 L3 L1 L1 L2 L2 L3 L1 L1 L2 L3 L3 L1 L1 L2 L3 L3 L1 L1 L2 L2 L3 L3 L1 L1 L2 L2 L3 L3 L1 L1 L2 L2 L3 L3 L1 L1 L2 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar side Connection distribution/feeder busbar Outgoing terminals of MCCB	Metal Tinned copper Tinned copper Tinned copper Tinned copper Silver-plated copper Silver-plated copper	15 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2) 70 2)	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3 62.5 59.4 65.8 66.6 58.7 63.7	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5 41.7 38.6 45.0 45.8 37.9 42.9
8 9 10 11 12 13 13 14 15	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L2 L2 L2	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar side Connection distribution/feeder busbar Outgoing terminals of MCCB Terminal RCD	Metal Tinned copper Tinned copper Tinned copper Tinned copper Silver-plated copper Silver-plated copper	15 70 ²⁾	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3 62.5 59.4 65.8 66.6 58.7 63.7 71.7	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5 41.7 38.6 45.0 45.8 37.9 42.9 50.9
8 9 10 11 12 13 14 15 16	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L2 L2 L2 L2	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar side Connection distribution/feeder busbar Outgoing terminals of MCCB Terminal RCD Terminal RCD	Metal Tinned copper Tinned copper Tinned copper Tinned copper Silver-plated copper Silver-plated copper Silver-plated copper Silver-plated copper	$ \begin{array}{r} 15 \\ 70^{2} $	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3 62.5 59.4 65.8 66.6 58.7 63.7 71.7 67.1	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5 41.7 38.6 45.0 45.8 37.9 42.9 50.9 46.3
8 9 10 11 12 13 14 15 16 17	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L2 L2 L2 L2	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar side Connection distribution/feeder busbar Outgoing terminals of MCCB Terminal RCD Terminal RCD Terminal fuse base Terminal contactor 1	Metal Tinned copper Tinned copper Tinned copper Tinned copper Silver-plated copper Silver-plated copper Silver-plated copper Silver-plated copper Silver-plated copper Silver-plated copper	$ \begin{array}{r} 15 \\ 70^{2} $	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3 62.5 59.4 65.8 66.6 58.7 63.7 71.7 67.1 56.2	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5 41.7 38.6 45.0 45.8 37.9 42.9 50.9 46.3 35.4
8 9 10 11 12 13 14 15 16 17	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L2 L2 L2 L2 L1	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar distribution busbar distribution busbar Connection distribution busbar side Connection distribution/feeder busbar Outgoing terminals of MCCB Terminal RCD Terminal lose base Terminal fuse base Terminal contactor 2	Metal Tinned copper Tinned copper Tinned copper Tinned copper Silver-plated copper Silver-plated copper Silver-plated copper Silver-plated copper	$ \begin{array}{r} 15 \\ 70^{2} $	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3 62.5 59.4 65.8 66.6 58.7 63.7 71.7 67.1 56.2 43.2	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5 41.7 38.5 41.7 38.6 45.0 45.8 37.9 42.9 50.9 46.3 35.4 22.4
8 9 10 11 12 13 14 15 16 17 18	- L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L2 L2 L2 L2 L2 L1 L2	Max. front temperature incomer Main busbar joint Connection Main/distribution busbar main busbar side Connection Main/distribution busbar distribution busbar distribution busbar distribution busbar Connection distribution busbar side Connection distribution/feeder busbar Outgoing terminals of MCCB Terminal RCD Terminal lose base Terminal fuse base Terminal contactor 2 Outgoing cable terminal	Metal Tinned copper Tinned copper Tinned copper Tinned copper Silver-plated copper Silver-plated copper Silver-plated copper Silver-plated copper Silver-plated copper Tinned copper	$ \begin{array}{r} 15 \\ 70^{2} \\ 70^{2} \\ 70^{2} \\ 70^{2} \\ 70^{2} \\ 70^{2} \\ 70^{2} \\ 70^{2} \\ 70^{2} \\ 70^{2} \\ 70^{2} \\ 70^{2} \\ 55 \\ \end{array} $	29.8 62.9 64.9 61.7 58.9 59.7 57.0 59.5 62.5 58.0 59.3 62.5 59.4 65.8 66.6 58.7 63.7 71.7 67.1 56.2 43.2 43.8	9.0 42.1 44.1 40.9 38.1 38.9 36.2 38.7 41.7 37.2 38.5 41.7 38.6 45.0 45.8 37.9 42.9 50.9 46.3 35.4 22.4 23.0

Notes:

- 1) Average of 3 measuring points
- 2) Value specified by the manufacturer

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Date of test:	08 January 2010
Test requirement:	Verification of the assembly, RDF: 0.8
Test current main/distribution busbar:	730 A
Test current 3A-MCCB-feeder:	56 A (0.8 x 70 A)
Test current 3B-MCCB-feeder:	200 A (0.8 x 250 A)
Test current 3C-MCCB-feeder:	160 A (0.8 x 200 A)
Test current 3D-MCCB-feeder:	80 A (0.8 x 100 A)
Ambient air temperature:	20.8 °C ¹⁾

Meas po	suring ints	Classification / Designation	Material	Temperature-rise limit permitted at a max. ambient air temp. of 50 °C	Final temperature	Final temperature rise
				in K	in °C	in K
19	-	Air inside compartment	-	-	37.2	-
20	-	Operating handle of incoming MCCB	Plastics	10	22.9	2.1
21		Max. front temperature unit 3	Metal	15	30.1	9.3
	L1	Connection			52.0	31.2
22	L2	distribution/feeder busbar	Tinned copper	70 2)	54.8	34.0
	L3				52.1	31.3
	L1			2)	62.0	41.2
23	L2	Outgoing terminals of MCCB	Silver-plated copper	70 2)	63.6	42.8
	L3				49.3	28.5
	L1				52.2	31.4
24	L2	Outgoing cable terminal	linned copper	55	53.7	32.9
	L3				50.9	30.1
25	-	Air inside compartment		-	35.7	-
26	-	Operating handle of feeder MCCB	Plastics	10	22.1	1.3
	L1	Connection			45.4	24.6
27	L2	distribution/feeder busbar	Tinned copper	70 ²⁾	47.7	26.9
	L3		•		44.9	24.1
28	L2	Incoming terminals of MCCB	Silver-plated copper	70 ²⁾	51.2	30.4
	L1			2)	52.2	31.4
29	L2	Outgoing terminals of MCCB	Silver-plated copper	70 ²⁾	54.2	33.4
	L3				47.2	26.4
	L1				46.2	25.4
30	L2	Outgoing cable terminal	Tinned copper	55	45.7	24.9
	L3				43.5	22.7
31	-	Air inside compartment	-	-	32.5	-
32	-	Operating handle of feeder MCCB	Plastics	10	21.3	0.5
	L1	Connection			39.0	18.2
33	L2	distribution/feeder busbar	Tinned copper	70 ²⁾	41.8	21.0
	L3				40.3	19.5
	L1				44.3	23.5
34	L2	Outgoing terminals of MCCB	Silver-plated copper	70 ²⁾	43.9	23.1
	L3				38.3	17.5
	L1				39.2	18.4
35	L2	Outgoing cable terminal	Tinned copper	55	40.9	20.1
	L3				35.0	14.2
36	-	Air inside compartment	-	-	29.9	-

Notes:

1) Average of 3 measuring points

2) Value specified by the manufacturer

Laboratory Reference No: 3345.2091256.0968

14. Verification of short-circuit withstand strength

14.1 Test laboratory

Low-voltage test laboratory, test room 1 and 10

14.2 Normative document

IEC 61439-2: 2009-01 IEC 61439-1: 2009-01, Sub-clause 10.11.5

14.3 Required test parameters

Verification of short-circuit withstand strength of the main/distribution busbar

Peak current	105	kΑ
Short-circuit current	50	kΑ
Duration of short-circuit	1	S

• Verification of conditional short-circuit current of the outgoing MCCB-feeder

Test voltage	436	V
Peak short-circuit current	105	kA
Symmetrical short-circuit current	50	kA
Power factor	0.25	

Verification of short-circuit withstand strength of the neutral busbar

Peak current	63	kΑ
Short-circuit current	30	kΑ
Duration of short-circuit	1	S

• Verification of conditional short-circuit current of the neutral of outgoing MCCB-feeder

Test voltage	253	V
Peak short-circuit current	63	kΑ
Symmetrical short-circuit current	30	kΑ
Power factor	0.25	

14.4 Test arrangement

According to IEC 61439-1: 2009-01, Sub-clause 10.11.5.1

Laboratory Reference No: 3345.2091256.0968

14.5 Test and measuring circuits

Verification of short-circuit withstand strength

Technical data of test circuits

Technical data of measuring circuits

Measuring point	Measured quantity	Measuring sensor/device
1	Short-circuit current L1	Rogowski measuring device
3	Short-circuit current L2	Rogowski measuring device
5	Short-circuit current L3	Rogowski measuring device
2	Voltage L1	RC divider
4	Voltage L2	RC divider
6	Voltage L3	RC divider

Laboratory Reference No: 3345.2091256.0968

14.6 Test results

Test requirement:	Verification of conditional short-circuit current of outgoing MCCB-feeder
Date of test:	15 January 2010
Connection of the test object:	By bar of 100 mm x 10 mm to the main busbar
Short-circuit point:	At the outgoing cable terminal of the MCCB feeder with copper cable 0.75 \mbox{m}
Condition of test object before test:	As after previous tests

Test No.			1010 0068	1010 0062	1010 0063	1010 0064
Test duty			Setting	I _{cc}	I _{cc}	l _{cc}
Test voltage	V		440	440	440	440
		L1	110	110	110	110
Prospective peak current	kA	L2	84.1	84.1	84.1	84.1
		L3	93.7	93.7	93.7	93.7
Prospective symmetrical		L1	50.9	50.9	50.9	50.9
short-circuit current, r.m.s value	kA	L2	50.4	50.4	50.4	50.4
		L3	50.2	50.2	50.2	50.2
	Avera	age	50.5	50.5	50.5	50.5
Power factor $\cos \phi$			0.21	0.21	0.21	0.21
		L1	-	8.83	22.4	23.3
Breaking current	kA	L2	-	15.7	28.9	29.1
		L3		8.37	12.4	12.7
		L1		0.106	1.15	1.29
Joule integral 10	⁶ A ² s	L2	-	0.313	2.03	2.18
		L3	-	0.075	0.238	0.246
Breaking time	ms		-	3.68	5.72	5.86
Notes	5		-	3D-MCCB- feeder	3C-MCCB- feeder	3B-MCCB- feeder
Evaluation			-	ок	ок	ок

Notes:

--

Condition of test object after test:

OK - Conductors and busbars did not show any undue deformation.

The supporting insulating parts did not show any significant signs of deterioration.

There was no loosening of parts used for the connection of conductors and

- conductors did not separate from the outgoing terminals.
- The fault current detecting device did not respond.

The switching devices are able to operate mechanically properly.

The insulation test with AC 1.0 kV, 1 min. was OK.

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Test requirement:	Verification of conditional short-circuit current of outgoing MCCB-feeder and incomer
Date of test:	15 January 2010
Connection of the test object:	By bar of 100 mm x 10 mm to the main busbar
Short-circuit point:	At the outgoing cable terminal of the MCCB feeder and incomer with copper cable 0.75 m
Condition of test object before test:	As after previous tests

Test No.			1010 0065	1010 0066	1010 0067
Test duty			lcc	lcc	lcc
Test voltage	V		440	440	440
		L1	110	110	110
Prospective peak current	kA	L2	84.1	84.1	84.1
		L3	93.7	93.7	93.7
Prospective symmetrical		L1	50.9	50.9	50.9
short-circuit current, r.m.s value	kA	L2	50.4	50.4	50.4
		L3	50.2	50.2	50.2
	Aver	age	50.5	50.5	50.5
Power factor $\cos \phi$			0.21	0.21	0.21
		L1	1.09	43.8	0.351
Breaking current	kA	L2	>1.65	49.1	0.596
		L3	1.89	27.4	0.476
		L1		7.69	-
Joule integral 10 ⁶	A^2s	L2	···	6.98	-
		L3	-	3.10	-
Breaking time	ms	1	0.39	10.0	1.93
Notes			3A-MCCB-feeder	Incomer	4A-MCCB-feeder
Evaluation			OK	ОК	ОК
	*				

Notes:

--

Condition of test object after test:

OK - Conductors and busbars did not show any undue deformation.

- The supporting insulating parts did not show any significant signs of deterioration.
- There was no loosening of parts used for the connection of conductors and
- conductors did not separate from the outgoing terminals.
- The fault current detecting device did not respond.
- The switching devices are able to operate mechanically properly.
- The insulation test with AC 1.0 kV, 1 min. was OK.

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Test requirement:	Verification of short-circuit withstand strength of the main busbar
Date of test:	15 January 2010
Connection of the test object:	By bar of 100 mm x 10 mm to the main busbar
Short-circuit point:	Above incoming MCCB in unit 1 with tinned copper bar of 2 x 30 mm x 10 mm
Condition of test object before test:	As after previous tests

Test No.			1010 0069
Test duty			I _{pk} , I _{cw}
		L1	109
Peak current	kA	L2	76.3
		L3	98.9
		L1	51.7
Short-time current	kA	L2	51.7
		L3	50.9
	Average	9	51.4
Duration of short-circuit	ms		980
		L1	2673
l ² t	10 ⁶ A ² s	L2	2632
		L3	2578
Equivalent 1-s current	kA		50.9
Notes			main busbar slightly bent
Evaluation	5		ок
Notes:	2		

Condition of test object after test:

OK - Conductors and busbars did show deformation, but the creepage and clearance distances described in sub-clause 10 were still complied with.

The supporting insulating parts did not show any significant signs of deterioration.

There was no loosening of parts used for the connection of conductors and conductors did not separate from the outgoing terminals.

The fault current detecting device did not respond.

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Test requirement:	Verification of short-circuit withstand strength of the distribution busbar
Date of test:	15 January 2010
Connection of the test object:	By bar of 100 mm x 10 mm to the main busbar
Short-circuit point:	At the end of the distribution busbar in unit 3 with tinned copper bar of 2 x 30 mm x 10 mm
Condition of test object before test:	As after previous tests

Test No.			1010 0070
Test duty			I _{pk} , I _{cw}
		L1	107
Peak current	kA	L2	73.8
		L3	98.9
		L1	51.2
Short-time current	kA	L2	51.2
		L3	50.5
	Average	;	51.0
Duration of short-circuit	ms		980
		L1	2625
l ² t	10 ⁶ A ² s	L2	2580
		L3	2540
Equivalent 1-s current	kA		50.5
Notes			Distribution busbar slightly bent
Evaluation	5		ок
Notes:	2		

Condition of test object after test:

OK - Conductors and busbars did show deformation, but the creepage and clearance distances described in sub-clause 10 were still complied with.

The supporting insulating parts did not show any significant signs of deterioration.

There was no loosening of parts used for the connection of conductors and conductors did not separate from the outgoing terminals.

The fault current detecting device did not respond.

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Test requirement:	Verification of short-circuit withstand strength of the neutral of the vertical distribution busbar
Date of test:	15 January 2010
Connection of the test object:	By bar of 100 mm x 10 mm to the main busbar
Short-circuit point:	At the end of the distribution busbar in unit 3 with tinned copper bar of 2 x 30 mm x 10 mm between phase L1 and N
Condition of test object before test:	As after previous tests

Test No.		1010 0071
Test duty		I _{pk} , I _{cw}
Peak current	kA	64.1
Short-time current	kA	30.7
Duration of short-circuit	ms	1013
l ² t	10 ⁶ A ² s	965
Equivalent 1-s current	kA	30.8
Notes		-
Evaluation		ок
Notes:		6
Condition of test object af	fter test:	

Condition of test object after test:

OK - Conductors and busbars did not show any undue deformation.

The supporting insulating parts did not show any significant signs of deterioration.

There was no loosening of parts used for the connection of conductors and conductors did not separate from the outgoing terminals.

The fault current detecting device did not respond.

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Test requirement:	Verification of short-circuit withstand strength of the neutral of the main busbar
Date of test:	15 January 2010
Connection of the test object:	By bar of 100 mm x 10 mm to the main busbar
Short-circuit point:	Above incoming MCCB in unit 1 with tinned copper bar of 2 x 30 mm x 10 mm
Condition of test object before test:	As after previous tests

Test No.		1010 0072
Test duty		I _{pk} , I _{cw}
Peak current	kA	64.4
Short-time current	kA	30.8
Duration of short-circuit	ms	1014
l ² t	10 ⁶ A ² s	959
Equivalent 1-s current	kA	30.8
Notes		
Evaluation		ок
Notes: 		9
Condition of test object aft	er test:	

Condition of test object after test:

OK - Conductors and busbars did not show any undue deformation.

The supporting insulating parts did not show any significant signs of deterioration. There was no loosening of parts used for the connection of conductors and conductors did not separate from the outgoing terminals. The fault current detecting device did not respond.

Date(s) of Test: 21 December 2009 to 23 August 2010

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Test requirement:	Verification of conditional short-circuit current of the neutral of outgoing MCCB-feeder
Date of test:	20 January 2010
Connection of the test object:	By copper cable of 240 mm ² to the cable terminal L3 and N below the in coming MCCB in unit 1
Short-circuit point:	At the outgoing cable terminal of the MCCB feeder with copper cable 0.75 m
Condition of test object before test:	As after previous tests

Test No.		209 5322	210 0351	210 0352
Test duty		lcc	lcc	lcc
Test voltage	V	253	253	253
Prospective peak current	kA	65.0	65.0	65.0
Prospective symmetrical short-circuit current, r.m.s value	kA	30.1	30.1	30.1
Power factor $\cos \phi$		0.22	0.22	0.22
Breaking current	kA	-	13.8	13.7
Joule integral 10 ³	A ² s	-	461	440
Breaking time	ms	-	5.0	5.0
Notes		Setting	3B-MCCB-feeder	3C-MCCB-feeder
Evaluation		ок	ОК	ОК
Notes: 				
Condition of test object after test	:			
			6	

Condition of test object after test:

- OK Conductors and busbars did not show any undue deformation.
 - The supporting insulating parts did not show any significant signs of deterioration.
 - There was no loosening of parts used for the connection of conductors and
 - conductors did not separate from the outgoing terminals.

The fault current detecting device did not respond.

The switching devices are able to operate mechanically properly.

The insulation test with AC 1.0 kV, 1 min. was OK.

Laboratory Reference No: 3345.2091256.0968

Test results (continued)

Test requirement:	Verification of conditional short-circuit current of the neutral of outgoing MCCB-feeder
Date of test:	20 January 2010
Connection of the test object:	By copper cable of 240 mm ² to the cable terminal L3 and N below the in coming MCCB in unit 1
Short-circuit point:	At the outgoing cable terminal of the MCCB feeder with copper cable 0.75 m
Condition of test object before test:	As after previous tests

Test No.		210 0353	210 0351	210 0352
Test duty		lcc	lcc	lcc
Test voltage	V	253	253	253
Prospective peak current	kA	65.0	65.0	65.0
Prospective symmetrical short-circuit current, r.m.s value	kA	30.1	30.1	30.1
Power factor $\cos \phi$		0.22	0.22	0.22
Breaking current	kA	9.7	9.06	7.29
Joule integral 10 ³	A ² s	154	125	88
Breaking time	ms	3.8	3.7	3.5
Notes		3D-MCCB-feeder	3A-MCCB-feeder	4A-MCCB-feeder
Evaluation		ОК	ОК	ОК
Notes: 		UN CONTRACTOR		
Condition of test object after tes	t:			

Notes:

Condition of test object after test:

OK - Conductors and busbars did not show any undue deformation.

The supporting insulating parts did not show any significant signs of deterioration. There was no loosening of parts used for the connection of conductors and conductors did not separate from the outgoing terminals.

The fault current detecting device did not respond.

The switching devices are able to operate mechanically properly.

The insulation test with AC 1.0 kV, 1 min. was OK.

15. Electromagnetic compatibility (EMC)

Immunity Tests

The assembly contains only passive elements except for the electronic over-current relays fitted in the moulded case circuit-breakers.

These products are covered by separate EMC disturbance test certificates supplied by the original manufacturer verifying compliance for Environment A conditions. No further immunity tests were applied. (Ref. ETL Semko test report E39009S2904G3 53/01)

Emission Tests

The assembly contains only passive elements except for the electronic over-current relays fitted in the moulded case circuit-breakers.

These products are covered by separate EMC disturbance test certificates supplied by the original manufacturer verifying compliance for Environment A conditions. No further emission tests were applied. (Ref. ETL Semko test report E39009S2904G3 53/01)

The assembly is a simple system comprising a mixture of passive components and EMC rice ity or e compliant components installed in accordance with the devices and components manufactures instructions. In accordance with clause J.10.12 no immunity or emission tests are required.

Date of check: 11 January 2010

Laboratory Reference No: 3345.2091256.0968

16. Mechanical operation
16.1 Test laboratory
Low-voltage test laboratory, test room 3
16.2 Normative document
IEC 61439-2: 2009-01 and IEC 61439-1: 2009-01, Sub-clause 10.13
16.3 Required test parameters
200 operating cycles for the MCCBs.
16.4 Test arrangement
None
16.5 Test and measuring circuits
An electronic register was installed for counting of operation cycles.
16.6 Test results
Date of test: 11 January 2010
All MCCBs installed were manually operated 200 times

After the tests, no signs of abnormal wear, damage or change of operating force was found on the switching devices.

Laboratory Reference No: 3345.2091256.0968

17. Photographs

Photograph 1: Rear view of ventilation louver with wire mesh

Photograph 2: Front view of test object in the temperature-rise test room

Laboratory Reference No: 3345.2091256.0968

Photograph 3: Rear view of test object in the temperature-rise test room

Laboratory Reference No: 3345.2091256.0968

Photograph 4: Connection of the MCCB-feeder for the verification of the conditional short-circuit current

Laboratory Reference No: 3345.2091256.0968

Photograph 5: Test object after short-circuit test 1010 0067

Laboratory Reference No: 3345.2091256.0968

Photograph 6: Test object after test of short-circuit withstand strength of the main busbar (with covers removed)

Laboratory Reference No: 3345.2091256.0968

Photograph 7: Test object after test of short-circuit withstand strength of the distribution busbar

Date(s) of Test: 21 December 2009 to 23 August 2010

2h

Laboratory Reference No: 3345.2091256.0968

Photograph 8: Test object after test of short-circuit withstand strength of the neutral of the distribution busbar

Laboratory Reference No: 3345.2091256.0968

Photograph 9: Test object after test of short-circuit withstand strength of the PE busbar

NN

Laboratory Reference No: 3345.2091256.0968

Photograph 10: Connection to the test object for test of the neutral of outgoing MCCB-feeder

Laboratory Reference No: 3345.2091256.0968

Photograph 11: Short-circuit connections for test of the neutral of outgoing MCCB-feeder

18. Oscillograms

Laboratory Reference No: 3345.2091256.0968

Test-No. 10100062

Laboratory Reference No: 3345.2091256.0968

ASTA Page 68 of 87

Laboratory Reference No: 3345.2091256.0968

RECORD OF PROVING TESTS Laboratory Reference No: 3345.2091256.0968

Test-No. 2100352

RECORD OF PROVING TESTS Laboratory Reference No: 3345.2091256.0968

Test-No. 2100353

RECORD OF PROVING TESTS Laboratory Reference No: 3345.2091256.0968

Laboratory Reference No: 3345.2091256.0968

Laboratory Reference No: 3345.2091256.0968

ASTA Page 81 of 87

19. Drawings

Laboratory Reference No: 3345.2091256.0968

ASTA

Laboratory Reference No: 3345.2091256.0968

ASTA

Laboratory Reference No: 3345.2091256.0968

ASTA Page 86 of 87

Laboratory Reference No: 3345.2091256.0968

